
Migrate to Zephyr Scale on Jira Data Center via APIs

In this document we will walk through the necessary process to migrate to Zephyr Scale. Below will also be attached an example script and

a video walking through the process. The example script and video will use Zephyr Squad to Zephyr Scale on Jira Data Center as the

example.

Step 1: Get All Test Cases From the Test Management Tool

First we must get the available test cases from the test management tool. Generally the ability exists to query all available test cases, or to

export a subset of test cases. Store this information in JSON so we can parse it later.

API Used: "http://localhost:8082/rest/agile/1.0/epic/none/issue?jql=project = WEB AND issuetype = Test ORDER BY

createdDate ASC"

Figure 1: High-level Diagram of Migration Process

Figure 2: Output File of Raw Test Case Data, Inclusive of All Test Cases

The next part is to use a parsing engine to parse the raw test case data, and output the fields we want to transfer over to key value pairs.

We can add more key value pairs here if necessary. Be sure to save the reference ID to each test case so we can update the correct test

case, with the correct test steps.

Step 2: Post All Test Cases to Zephyr Scale

Now we have the necessary data, lets create test cases in Zephyr Scale. You can publish the whole array of test cases from Figure 3. If

there was any rework to the naming conventions we can adjust that here. While we are publishing the test cases to Zephyr Scale, we note

the test case key that is created from Zephyr. We then output a new file which contains the Zephyr Scale key and the reference ID to the

test steps from the test management tool in key value pair, for each test case.

API Used: "http://localhost:8082/rest/atm/1.0/testcase"

The file from Figure 4 becomes our iteration file. We will update a single Zephyr Scale test case with the corresponding test steps, using the

Key and ID respectively.

Note: Iteration starts here

Figure 3: Output File of Test Case Data Converted to Key Value Pairs

Figure 4: Output File of ID and
Zephyr Scale Key

Step 3: Get a Single Test Case’s Test Steps from the Test Management tool

Using Figure 4’s ID, query the test steps for 1 test case. This data will be raw, so we likely will need to clean it up.

API Used: "http://localhost:8082/rest/zapi/latest/teststep/{ID}"

We then transform the data to key value pairs. If there was more data (like custom fields) or naming convention adjustment, we can add

that here.

Before we publish to Zephyr Scale we need to transform the key value pairs to a format Zephyr Scale will accept via API. Again if there was

more data in Figure 5, you can add that in to the script here.

Step 4: Update a Single Test Case’s Test Steps in Zephyr Scale

Using the output file as a payload, example shown in Figure 6, update the test case with the corresponding test steps in Zephyr Scale.

API Used: "http://localhost:8082/rest/atm/1.0/testcase/{key}"

Step 5: Get All Test Executions for 1 Test Case

Now we use the ID that is stored in Figure 4 to query the correct executions per the right test case.

In order to create multiple executions at once we need to create a test run, which will give us a test cycle where we can POST multiple

results to.

API Used: "http://localhost:8082/rest/zapi/latest/execution?issueId={ID}"

API Used: "http://localhost:8082/rest/atm/1.0/testrun"

Figure 5: Output File of Test Steps for 1 Test Case from Legacy Test Management Tool

Figure 5: Output File of Transformed Step Data

Figure 6: Output File That Becomes
Payload of Step 4

Step 6: Post All Test Executions for 1 Test Case

We then translate the test case execution data to key value pairs, and make it Zephyr Scale acceptable. The output file, highlighted in

Figure 8, is used as the payload when posting test case executions.

API Used: 'http://localhost:8082/rest/atm/1.0/testrun/{cycleKey}/testresults'

Video Example using Zephyr Squad to Zephyr Scale on Jira Data Center

Video Conferencing, Web Conferencing, Webinars, Screen Sharing

Passcode: g^09=z#3

Script Example using Zephyr Squad to Zephyr Scale on Jira Data Center

Figure 7: Raw Test Case Execution Data

Figure 8: Cleaned Test Case
Execution Data

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

import requests

from requests.auth import HTTPBasicAuth

import json

################## Step 1: Get Zephyr Squad Test Cases via Jira API ###################################

This creates 1 files containing the raw Zephyr Squad test case response, call it file1.

Get all Zephyr Squad test cases, and output to a file

#This will query all tests per epic, per JQL expression

url = "http://localhost:8082/rest/agile/1.0/epic/none/issue?jql=project = WEB AND issuetype = Test ORDER BY cre

##Replace with Jira username

username = ""

##Replace with Jira Password

password = ""

##Output file path of the Zephyr Squad Test Cases

output_file_path = "1.txt"

#Use auth when creating session

session = requests.Session()

https://smartbear.zoom.us/rec/share/yjT3SE_4gdlqi2N6Z7p4ki4nwn7ZrpwG7S6mTj5frRXHH7YreGyRpD_3flbkm81e.KsgL3f2TC3mbo6_-?startTime=1692371217000

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

session.auth = (username, password)

try:

 # Send GET request

 response = session.get(url)

 # Check if the request was successful

 if response.status_code == 200:

 # Parse the response content (you might need to adjust this depending on the response format)

 response_content = response.text

 # Save the response content to the output file

 with open(output_file_path, "w") as output_file:

 output_file.write(response_content)

 print("Response saved to", output_file_path)

 else:

 print("Request failed with status code:", response.status_code)

except requests.RequestException as e:

 print("An error occurred:", e)

################## Parse Zephyr Squad Test Case Data to Post to Zephyr Scale ##################################

This creates 1 files containing the parsed Zephyr Squad test case data, call it file2.

Transform raw Zephyr Squad GET test cases' response into key-value pairs of required test case information.

We can add as many fields here as we want.

##File path of Zephyr Squad Test Cases

file_path = r"1.txt"

##New File that will output specific Key Value Pairs from file path

output_file_path = r"2.txt"

Read JSON data from file

with open(file_path, 'r') as file:

 json_data = json.load(file)

Extract projectKey, ID, Name, and priority for each issue

#Here is where we would specify any and all fields we want from Zephyr Squad to be pushed to Zephyr Scale

parsed_data = []

for issue in json_data["issues"]:

 projectKey = issue["fields"]["project"]["key"]

 ID = issue["id"]

 name = issue["fields"]["summary"]

 priority_info = issue["fields"].get("priority")

 priority = priority_info["name"] if priority_info else "No priority"

 parsed_data.append({

 #"projectKey": projectKey,

 "projectKey": "APPS",

 "ID": ID,

 "name": name,

 "priority": priority,

 })

Write parsed data to output file

with open(output_file_path, 'w') as output_file:

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

 json.dump(parsed_data, output_file, indent=4)

print(f"Parsed data has been written to {output_file_path}")

################## Step 2: POST Zephyr Squad Test Cases to Zephyr Scale and Create Key-Value Pairs ###########

This creates multiple test cases in Zephyr Scale, however many are contained with the output of file2. Whil

it is saving in a new file, the key value pairs of Zephyr Squads test case IssueID and the newly created Z

callit file2.5.

POST Zephyr Scale Test Case's from file2

##File path that 2.txt was written to. You could use outputfile path variable above.

with open("C:\\ZScale\\ConverterReady\\ReallyConvertReady\\SimplifiedByClass\\2.txt", 'r') as file: #load outp

 data = json.load(file)

##Zephyr Scale POST test cases API

url = "http://localhost:8082/rest/atm/1.0/testcase"

Initialize a list to store the responses

responses = []

Iterate through each object in the JSON array

for item in data:

 # Extract desired fields

 project_key = item["projectKey"]

 name = item["name"]

 # Create payload using extracted fields

 payload = {

 "projectKey": project_key,

 "name": name

 }

 # Send POST request with the payload and Basic Authentication

 response = requests.post(url, json=payload, auth=HTTPBasicAuth(username, password))

 # Check the response status and content

 if response.status_code == 201:

 response_data = response.json()

 key = response_data.get("key")

 responses.append({"ID": item["ID"], "key": key})

 print(f"POST request for {item['ID']} successful!")

 print("Response content:", response_data)

 else:

 print(f"POST request for {item['ID']} failed with status code:", response.status_code)

 print("Response content:", response.text)

Save Key-Value pairs of Zephyr Squad Test Case IssueID (in order to get Zephry Squad Test Steps)

and Newly Created Zephyr Scale Test Case Key(in order to update the proper test cases with the proper script

into file2.5.

Write Key and ID to an output file to use later

with open('2.5.txt', 'w') as output_file:

 json.dump(responses, output_file, indent=2)

print("Responses written to 2.5.txt")

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

Iteration Starts Here

################### Step 3: GET 1 Zephyr Squad Test Case's Test Steps and Step 4: PUT (update) Zephyr Scales Te

This will GET 1 Zephyr Squad test case's test steps from file2.5, and save its test steps in file3. Then tr

file4. Transform file 4 to the test steps format Zephyr Scale will accept, save that to file5. Update the Z

and using the data saved as payload in file5. Iterate until file 2.5 is finished.

Use file2.5 to iterate down Test case keys

##File path that 2.5txt was written to. You could use outputfile path variable above.

with open("C:\\ZScale\\ConverterReady\\ReallyConvertReady\\SimplifiedByClass\\2.5.txt", "r") as file:

 data = json.load(file)

Step 3: Get a Single Test Case’s Test Steps from the Test Management tool

Get Zephyr Squad Test Case Steps

Create a session with basic authentication

session = requests.Session()

session.auth = (username, password)

for item in data:

 key = item["key"]

 ID = item["ID"]

 url = f"http://localhost:8082/rest/zapi/latest/teststep/{ID}"

 try:

 # Send GET request

 response = session.get(url)

 # Check if the request was successful

 if response.status_code == 200:

 # Parse the response content (you might need to adjust this depending on the response format)

Write Zephyr Squad test step data to a file, file3

 response_content = response.text

 output_file_path = "3.txt"

 # Save the response content to the output file

 with open(output_file_path, "w") as output_file:

 output_file.write(response_content)

 print("Response saved to", output_file_path)

 else:

 print("Request failed with status code:", response.status_code)

 except requests.RequestException as e:

 print("An error occurred:", e)

Transform Raw Zephyr Squad Test Step Data to Key-Valye Pairs

Save in file, file4

 # Replace this with the path to your JSON file

 json_file_path = "3.txt"

 output_file_path = "4.txt" # Replace with your desired output file path

 # Read the JSON data from the file

 with open(json_file_path, "r") as json_file:

 json_data = json_file.read()

 # Parse the JSON data

 parsed_data = json.loads(json_data)

 # Extract and store "step", "data", and "result" values in key-value pairs

 step_data_pairs = []

 for step_entry in parsed_data["stepBeanCollection"]:

 step_data_pairs.append({

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

 "step": step_entry["step"].strip(),

 "data": step_entry["data"].strip(),

 "result": step_entry["result"].strip()

 })

 # Write the extracted key-value pairs to the output file

 with open(output_file_path, "w") as output_file:

 for pair in step_data_pairs:

 output_file.write(json.dumps(pair) + "\n")

 print("Extracted data saved to", output_file_path)

 # Replace this with the path to your JSON file

 input_file_path = "4.txt"

 output_file_path = "5.txt" \

 # Read the JSON data from the file

 with open(input_file_path, "r") as input_file:

 extracted_data = input_file.readlines()

Transform Key-Value Pairs to Zephyr Scale Acceptable

Save trannsformed data in file5

 # Transform the extracted data

 transformed_data = {

 "testScript": {

 "type": "STEP_BY_STEP",

 "steps": []

 }

 }

 for entry in extracted_data:

 kvp = json.loads(entry)

 step_description = kvp["step"]

 data_description = kvp["data"]

 result_description = kvp["result"]

 step = {

 "description": step_description.strip(".") + ".",

 "testData": data_description.strip(".") + ".",

 "expectedResult": result_description.strip(".") + "."

 }

 transformed_data["testScript"]["steps"].append(step)

 # Write the transformed data to the output file

 with open(output_file_path, "w") as output_file:

 json.dump(transformed_data, output_file, indent=2)

 print("Transformed data saved to", output_file_path)

Send PUT Request to Update Corresponding Zephyr Scale Test Case with Correct Test Steps

Use file2.5 to get the correct Zephyr Scale test case key, and file5 for the payload of test steps.

#Need filepath declared for file 2.5.txt or variable

 with open("C:\\ZScale\\ConverterReady\\ReallyConvertReady\\SimplifiedByClass\\2.5.txt", "r") as file:

 data = json.load(file)

 key = item["key"]

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

 ID = item["ID"]

 # Replace these with your actual values

#Step 4: Update a Single Test Case’s Test Steps in Zephyr Scale

#PUT Request to update Zephyr Scale Test Case

 url = f"http://localhost:8082/rest/atm/1.0/testcase/{key}"

 file_path = "5.txt" # Replace with the actual file path

 # Read the payload from the file

 with open(file_path, "r") as file:

 payload_data = file.read()

 # Set up Basic Authentication

 auth = HTTPBasicAuth(username, password)

 # Send the PUT request with the payload

 response = requests.put(url, data=payload_data, auth=auth, headers={"Content-Type": "application/json"}

 if response.status_code == 200:

 print("PUT request successful")

 else:

 print("PUT request failed with status code:", response.status_code)

Step 5: Get Zephyr Squad Test Case Executions

Use file2.5 to get the correct Zephyr Squad executions POST the right test Executions .

 with open("C:\\ZScale\\ConverterReady\\ReallyConvertReady\\SimplifiedByClass\\2.5.txt", "r") as file:

 data = json.load(file)

 key = item["key"]

 ID = item["ID"]

 url = f"http://localhost:8082/rest/zapi/latest/execution?issueId={ID}"

 ##Replace with Jira username

 username = ""

 ##Replace with Jira Password

 password = ""

 ##Output file path of the Zephyr Squad Test Cases

 output_file_path = "6.txt"

 #Use auth when creating session

 session = requests.Session()

 session.auth = (username, password)

 try:

 # Send GET request

 response = session.get(url)

 # Check if the request was successful

 if response.status_code == 200:

 # Parse the response content (you might need to adjust this depending on the response format)

 response_content = response.text

 # Save the response content to the output file

 with open(output_file_path, "w") as output_file:

 output_file.write(response_content)

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

 print("Response saved to", output_file_path)

 else:

 print("Request failed with status code:", response.status_code)

 except requests.RequestException as e:

 print("An error occurred:", e)

 with open("6.txt", "r") as file:

 data = file.read()

 # Load the JSON data

 data_dict = json.loads(data)

 key_value_pairs = []

 # Define a mapping of execution status values to their descriptions

 status_mapping = {

 "1": "Pass",

 "2": "Fail",

 "3": "WIP",

 "4": "Blocked",

 "-1": "Unexecuted"

 }

 # Iterate through the executions

 for execution in data_dict["executions"]:

 execution_status_id = execution["executionStatus"]

 execution_status = status_mapping.get(execution_status_id, "Unknown")

 # Create a key-value pair for each execution

 key_value_pair = {

 "status": execution_status,

 "testCaseKey": key

 }

 # Append the key-value pair to the list

 key_value_pairs.append(key_value_pair)

 # Write the list of key-value pairs to an output file as a JSON array

 with open("7.txt", "w") as output_file:

 json.dump(key_value_pairs, output_file, indent=4) # indent for pretty formatting

 print("Data extracted and saved to '7.txt'.")

 payload = {

 "name": "Migrating Executions From Legacy Tool",

 "projectKey": "APPS"

 }

 url = 'http://localhost:8082/rest/atm/1.0/testrun'

 username = ""

 ##Replace with Jira Password

 password = ""

 auth = HTTPBasicAuth(username, password)

 # Send the POST request with the payload data

 response = requests.post(url, auth=auth, json=payload)

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

 # Check the response

 if response.status_code == 201:

 data = response.json() # Parse the JSON response

 cycleKey = data["key"] # Extract the "key" value and store it in cycleKey

 else:

 print(f"Request failed with status code {response.status_code}")

 ##Step 6: POST executions to Zephyr Scale

 url = f'http://localhost:8082/rest/atm/1.0/testrun/{cycleKey}/testresults'

 file_path = "7.txt" # Replace with the actual file path

 # Read the payload from the file

 with open(file_path, "r") as file:

 payload_data = file.read()

 # Set up Basic Authentication

 auth = HTTPBasicAuth(username, password)

 # Send the PUT request with the payload

 response = requests.post(url, data=payload_data, auth=auth, headers={"Content-Type": "application/json"

 if response.status_code == 201:

 print("Post request successful")

 else:

 print("POST request failed with status code:", response.status_code)

 print(url)

Could add test case attachments by:

GET https://zephyrsquadserver.docs.apiary.io/#reference/attachmentresource/delete-attachment/get-single-atta

POST /testcase/{testCaseKey}/attachments https://support.smartbear.com/zephyr-scale-server/api-docs/v1/

Would have to be added to the iteration

